OM4+ OM5

Future technology - multicore fiber resistant to bending Innovative $40 \mathrm{~Gb} / \mathrm{s}$ and $100 \mathrm{~Gb} / \mathrm{s}$ multicore fiber,

 resistant to bending

At present, multimode fiber 50um/ 125um/ 242 um OM4 resistant to bending (radius bending< 10 mm) comply with IEC 60793-2-10 guarantee $10 \mathrm{~Gb} / \mathrm{s}$ at 550 m and 850 nm wavelength and $1 \mathrm{~Gb} / \mathrm{s}$ at 1100 m . These fibers can be characterized by 3500 MHzkm bandwidth, whereas for $100 \mathrm{~Gb} / \mathrm{s}$ systems for 850 wavelength and 500 MHzkm for 1300 nm . The bandwidth is $4700 \mathrm{Mhz} / \mathrm{km}$. OM4 meets high requirements and needs set to state-of-the-art technologies and are optimized to be used in cheap and fast VCSEL lasers. Typical attenuation values of OM4 fibers reach $=<2.3 \mathrm{~dB} / \mathrm{km}$ for 850 nm and $=<0.5 \mathrm{~dB}$ for 1300 and attenuation loss values with 7.5 mm radiuses for the fibers are $=<0.2 \mathrm{~dB}=<0.5 \mathrm{~dB}$ for 850 nm and 1300 nm .

Since 2012 multicore fibers OM4+/ OM5 are available and they comply or even exceed IEC 60793-210 A1a.3. type. Therefore aforementioned fibers have been specifically designed for the fastest systems like $40 \mathrm{~Gb} / \mathrm{s}$ and $100 \mathrm{~Gb} / \mathrm{s}$ which use VCSEL lasers. In the systems of $>25 \mathrm{~Gb}$ and a distance > 150 m in modal and chromatic dispersion they are growing in importance and should not be neglected. New and innovative fibers OM4+/OM5 can be characterized by such effective bandwidth (EB) which reflects mutual influence.

Effective dispersion reaches $>4700 \mathrm{MHzkm}$. Thanks to OM4+/ OM5 provides the possibility to construct faster systems with VCSEL laser source, which guarantee transmission in longer distances. Therefore, thanks to high bending resistance, these systems can also be applied in more complex systems. Such fibers with high bending resistance guarantee cable design with smaller dimensions, which significantly reduces length of cables and increases a volume of cable in a limited area. Consequently, these cables are specifically designed for distribution
points or LAN server rooms.

Furthermore, these fibers guarantee high reliability of the available transmission systems while the fiber attenuation does not exceed $3,0 \mathrm{~dB} / \mathrm{km}$ for 850 nm wavelength.

Optic characteristics

Max. attenuation
 1300 nm wavelength
 850 nm wavelength

Chromatic dispersion
Zero-dispersion wavelength ($\lambda 0$)
Curve gradient for zero dispersion ($\lambda 0$)

$$
1295 \mathrm{~nm} \leq \lambda 0 \leq 1310 \mathrm{~nm}
$$

$1310 \mathrm{~nm} \leq \lambda 0 \leq 1340 \mathrm{~nm}$
Transmission length vs. transmission speed
40GBASE-SR4 / 100GBASE-SR10
10GBASE-SR
1GBASE-SR
Mininal bandwidth
Modal bandwith
850 nm wavelength
1300 nm wavelength
Effective modal bandwidth
850 nm wavelength
Effective bandwidth
850 nm wavelength
Attenuation of macro-bending radius
2 loops of 7.5 mm radius
2 loops of 15 mm radius

$\leq 0.5 \mathrm{~dB} / \mathrm{km}$

$\leq 2.3 \mathrm{~dB} / \mathrm{km}$
$1295 \mathrm{~nm} \leq \lambda 0 \leq 1340 \mathrm{~nm}$
$\leq 0.105 \mathrm{ps} / \mathrm{nm}^{2} \mathrm{~km}$
$\leq 0.000375 \mathrm{ps} / \mathrm{nm}^{2} \mathrm{~km}$

200 m
600 m
1200 m
$3500 \mathrm{MHz} . \mathrm{km}$
$500 \mathrm{MHz} . \mathrm{km}$
$4700 \mathrm{MHz} . \mathrm{km}$
$5000 \mathrm{MHz} . \mathrm{km}$
for $850 \mathrm{~nm} / 1300 \mathrm{~nm} \leq 0.2 / \leq 0.5 \mathrm{~dB}$ for $850 \mathrm{~nm} / 1300 \mathrm{~nm} \leq 0.1 / \leq 0.3 \mathrm{~dB}$

Geometry characteristics

Core diameter
$50 \pm 2.5 \mu \mathrm{~m}$
Coat diameter
Coat ovalness
Centricity mistake margin core/coat
Original cover diameter
Original cover diameter mistake margin
$125.0 \pm 1.0 \mu \mathrm{~m}$
$\leq 0.7 \%$
$\leq 1.0 \mu \mathrm{~m}$
$242 \pm 5 \mu \mathrm{~m}$
$\leq 10 \mu \mathrm{~m}$

100 kPsi (>0.69 GPa)

Level of sifting quality test

Strength range for coat removal

